!!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
!! NEMO/OPA : 1 - run manager (namrun)
!! namelists 2 - Domain (namcfg, namzgr, namzgr_sco, namdom, namtsd)
!! 3 - Surface boundary (namsbc, namsbc_ana, namsbc_flx, namsbc_clio, namsbc_core, namsbc_sas
!! namsbc_cpl, namtra_qsr, namsbc_rnf,
!! namsbc_apr, namsbc_ssr, namsbc_alb)
!! 4 - lateral boundary (namlbc, namcla, namobc, namagrif, nambdy, nambdy_tide)
!! 5 - bottom boundary (nambfr, nambbc, nambbl)
!! 6 - Tracer (nameos, namtra_adv, namtra_ldf, namtra_dmp)
!! 7 - dynamics (namdyn_adv, namdyn_vor, namdyn_hpg, namdyn_spg, namdyn_ldf)
!! 8 - Verical physics (namzdf, namzdf_ric, namzdf_tke, namzdf_kpp, namzdf_ddm, namzdf_tmx)
!! 9 - diagnostics (namnc4, namtrd, namspr, namflo, namhsb, namsto)
!! 10 - miscellaneous (namsol, nammpp, namctl)
!! 11 - Obs & Assim (namobs, nam_asminc)
!!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
!!======================================================================
!! *** Run management namelists ***
!!======================================================================
!! namrun parameters of the run
!!======================================================================
!
!-----------------------------------------------------------------------
&namrun ! parameters of the run
!-----------------------------------------------------------------------
nn_no = 0 ! job number (no more used...)
cn_exp = "piCo" ! experience name
nn_it000 = 2933633 ! first time step
nn_itend = 2945312 ! last time step (std 5475)
nn_date0 = 21010101 ! date at nit_0000 (format yyyymmdd)
! used if ln_rstart=F or
! (ln_rstart=T and nn_rstctl=0 or 1)
nn_leapy = 1 ! Leap year calendar (1) or not (0)
ln_rstart = .TRUE. ! start from rest (F) or from a restart file (T)
nn_euler = 1 ! = 0 : start with forward time step if ln_rstart=T
nn_rstctl = 1 ! restart control ==> activated only if ln_rstart=T
! = 0 nn_date0 read in namelist ; nn_it000 : read in namelist
! = 1 nn_date0 read in namelist ; nn_it000 : check consistancy between namelist and restart
! = 2 nn_date0 read in restart ; nn_it000 : check consistancy between namelist and restart
cn_ocerst_in = "restart_oce" ! suffix of ocean restart name (input)
cn_ocerst_indir = "." ! directory from which to read input ocean restarts
cn_ocerst_out = "restart_oce" ! suffix of ocean restart name (output)
cn_ocerst_outdir = "." ! directory in which to write output ocean restarts
nn_istate = 0 ! output the initial state (1) or not (0)
ln_rst_list = .false. ! output restarts at list of times using nn_stocklist (T) or at set frequency with nn_stock (F)
nn_stock = 0 ! frequency of creation of a restart file (modulo referenced to 1)
nn_stocklist = 0,0,0,0,0,0,0,0,0,0 ! List of timesteps when a restart file is to be written
nn_write = -1 ! frequency of write in the output file (modulo referenced to nn_it000)
ln_dimgnnn = .false. ! DIMG file format: 1 file for all processors (F) or by processor (T)
ln_mskland = .true. ! mask land points in NetCDF outputs (costly: + ~15%)
ln_mskutil = .false.
ln_cfmeta = .false. ! output additional data to netCDF files required for compliance with the CF metadata standard
ln_clobber = .false. ! clobber (overwrite) an existing file
nn_chunksz = 0 ! chunksize (bytes) for NetCDF file (works only with iom_nf90 routines)
/
!
!!======================================================================
!! *** Domain namelists ***
!!======================================================================
!! namcfg parameters of the configuration
!! namzgr vertical coordinate
!! namzgr_sco s-coordinate or hybrid z-s-coordinate
!! namdom space and time domain (bathymetry, mesh, timestep)
!! namtsd data: temperature & salinity
!!======================================================================
!
!-----------------------------------------------------------------------
&namcfg ! parameters of the configuration
!-----------------------------------------------------------------------
cp_cfg = "default" ! name of the configuration
cp_cfz = "no zoom" ! name of the zoom of configuration
jp_cfg = 0 ! resolution of the configuration
jpidta = 10 ! 1st lateral dimension ( >= jpi )
jpjdta = 12 ! 2nd " " ( >= jpj )
jpkdta = 31 ! number of levels ( >= jpk )
jpiglo = 10 ! 1st dimension of global domain --> i =jpidta
jpjglo = 12 ! 2nd - - --> j =jpjdta
jpizoom = 1 ! left bottom (i,j) indices of the zoom
jpjzoom = 1 ! in data domain indices
jperio = 0 ! lateral cond. type (between 0 and 6)
! = 0 closed ; = 1 cyclic East-West
! = 2 equatorial symmetric ; = 3 North fold T-point pivot
! = 4 cyclic East-West AND North fold T-point pivot
! = 5 North fold F-point pivot
! = 6 cyclic East-West AND North fold F-point pivot
ln_use_jattr = .false. ! use (T) the file attribute: open_ocean_jstart, if present
! in netcdf input files, as the start j-row for reading
/
!-----------------------------------------------------------------------
&namzgr ! vertical coordinate
!-----------------------------------------------------------------------
ln_zco = .false. ! z-coordinate - full steps (T/F) ("key_zco" may also be defined)
ln_zps = .true. ! z-coordinate - partial steps (T/F)
ln_sco = .false. ! s- or hybrid z-s-coordinate (T/F)
ln_isfcav = .false. ! ice shelf cavity (T/F)
/
!-----------------------------------------------------------------------
&namzgr_sco ! s-coordinate or hybrid z-s-coordinate
!-----------------------------------------------------------------------
ln_s_sh94 = .true. ! Song & Haidvogel 1994 hybrid S-sigma (T)|
ln_s_sf12 = .false. ! Siddorn & Furner 2012 hybrid S-z-sigma (T)| if both are false the NEMO tanh stretching is applied
ln_sigcrit = .false. ! use sigma coordinates below critical depth (T) or Z coordinates (F) for Siddorn & Furner stretch
! stretching coefficients for all functions
rn_sbot_min = 10.0 ! minimum depth of s-bottom surface (>0) (m)
rn_sbot_max = 7000.0 ! maximum depth of s-bottom surface (= ocean depth) (>0) (m)
rn_hc = 150.0 ! critical depth for transition to stretched coordinates
!!!!!!! Envelop bathymetry
rn_rmax = 0.3 ! maximum cut-off r-value allowed (0<r_max<1)
!!!!!!! SH94 stretching coefficients (ln_s_sh94 = .true.)
rn_theta = 6.0 ! surface control parameter (0<=theta<=20)
rn_bb = 0.8 ! stretching with SH94 s-sigma
!!!!!!! SF12 stretching coefficient (ln_s_sf12 = .true.)
rn_alpha = 4.4 ! stretching with SF12 s-sigma
rn_efold = 0.0 ! efold length scale for transition to stretched coord
rn_zs = 1.0 ! depth of surface grid box
! bottom cell depth (Zb) is a linear function of water depth Zb = H*a + b
rn_zb_a = 0.024 ! bathymetry scaling factor for calculating Zb
rn_zb_b = -0.2 ! offset for calculating Zb
!!!!!!!! Other stretching (not SH94 or SF12) [also uses rn_theta above]
rn_thetb = 1.0 ! bottom control parameter (0<=thetb<= 1)
/
!-----------------------------------------------------------------------
&namdom ! space and time domain (bathymetry, mesh, timestep)
!-----------------------------------------------------------------------
nn_bathy = 1 ! compute (=0) or read (=1) the bathymetry file
rn_bathy = 0. ! value of the bathymetry. if (=0) bottom flat at jpkm1
nn_closea = 0 ! remove (=0) or keep (=1) closed seas and lakes (ORCA)
nn_msh = 0 ! create (=1) a mesh file or not (=0)
rn_hmin = -3. ! min depth of the ocean (>0) or min number of ocean level (<0)
rn_e3zps_min= 20. ! partial step thickness is set larger than the minimum of
rn_e3zps_rat= 0.1 ! rn_e3zps_min and rn_e3zps_rat*e3t, with 0<rn_e3zps_rat<1
!
rn_rdt = 5760. ! time step for the dynamics (and tracer if nn_acc=0)
rn_atfp = 0.1 ! asselin time filter parameter
nn_acc = 0 ! acceleration of convergence : =1 used, rdt < rdttra(k)
! =0, not used, rdt = rdttra
rn_rdtmin = 28800. ! minimum time step on tracers (used if nn_acc=1)
rn_rdtmax = 28800. ! maximum time step on tracers (used if nn_acc=1)
rn_rdth = 800. ! depth variation of tracer time step (used if nn_acc=1)
ln_crs = .false. ! Logical switch for coarsening module
jphgr_msh = 0 ! type of horizontal mesh
! = 0 curvilinear coordinate on the sphere read in coordinate.nc
! = 1 geographical mesh on the sphere with regular grid-spacing
! = 2 f-plane with regular grid-spacing
! = 3 beta-plane with regular grid-spacing
! = 4 Mercator grid with T/U point at the equator
ppglam0 = 0.0 ! longitude of first raw and column T-point (jphgr_msh = 1)
ppgphi0 = -35.0 ! latitude of first raw and column T-point (jphgr_msh = 1)
ppe1_deg = 1.0 ! zonal grid-spacing (degrees)
ppe2_deg = 0.5 ! meridional grid-spacing (degrees)
ppe1_m = 5000.0 ! zonal grid-spacing (degrees)
ppe2_m = 5000.0 ! meridional grid-spacing (degrees)
ppsur = -4762.96143546300 ! ORCA r4, r2 and r05 coefficients
ppa0 = 255.58049070440 ! (default coefficients)
ppa1 = 245.58132232490 !
ppkth = 21.43336197938 !
ppacr = 3.0 !
ppdzmin = 10. ! Minimum vertical spacing
pphmax = 5000. ! Maximum depth
ldbletanh = .TRUE. ! Use/do not use double tanf function for vertical coordinates
ppa2 = 100.760928500000 ! Double tanh function parameters
ppkth2 = 48.029893720000 !
ppacr2 = 13.000000000000 !
/
!-----------------------------------------------------------------------
&namsplit ! time splitting parameters ("key_dynspg_ts")
!-----------------------------------------------------------------------
ln_bt_fw = .TRUE. ! Forward integration of barotropic equations
ln_bt_av = .TRUE. ! Time filtering of barotropic variables
ln_bt_nn_auto = .TRUE. ! Set nn_baro automatically to be just below
! a user defined maximum courant number (rn_bt_cmax)
nn_baro = 30 ! Number of iterations of barotropic mode
! during rn_rdt seconds. Only used if ln_bt_nn_auto=F
rn_bt_cmax = 0.8 ! Maximum courant number allowed if ln_bt_nn_auto=T
nn_bt_flt = 1 ! Time filter choice
! = 0 None
! = 1 Boxcar over nn_baro barotropic steps
! = 2 Boxcar over 2*nn_baro " "
/
!-----------------------------------------------------------------------
&namcrs ! Grid coarsening for dynamics output and/or
! passive tracer coarsened online simulations
!-----------------------------------------------------------------------
nn_factx = 3 ! Reduction factor of x-direction
nn_facty = 3 ! Reduction factor of y-direction
nn_binref = 0 ! Bin centering preference: NORTH or EQUAT
! 0, coarse grid is binned with preferential treatment of the north fold
! 1, coarse grid is binned with centering at the equator
! Symmetry with nn_facty being odd-numbered. Asymmetry with even-numbered nn_facty.
nn_msh_crs = 1 ! create (=1) a mesh file or not (=0)
nn_crs_kz = 0 ! 0, MEAN of volume boxes
! 1, MAX of boxes
! 2, MIN of boxes
ln_crs_wn = .true. ! wn coarsened (T) or computed using horizontal divergence ( F )
/
!-----------------------------------------------------------------------
&namc1d ! 1D configuration options ("key_c1d")
!-----------------------------------------------------------------------
rn_lat1d = 50 ! Column latitude (default at PAPA station)
rn_lon1d = -145 ! Column longitude (default at PAPA station)
ln_c1d_locpt= .true. ! Localization of 1D config in a grid (T) or independant point (F)
/
!-----------------------------------------------------------------------
&namtsd ! data : Temperature & Salinity
!-----------------------------------------------------------------------
!-----------------------------------------------------------------------
cn_dir = './' ! root directory for the location of the runoff files
ln_tsd_init = .true. ! Initialisation of ocean T & S with T &S input data (T) or not (F)
ln_tsd_tradmp = .false. ! damping of ocean T & S toward T &S input data (T) or not (F)
/
!!======================================================================
!! *** Surface Boundary Condition namelists ***
!!======================================================================
!! namsbc surface boundary condition
!! namsbc_ana analytical formulation
!! namsbc_flx flux formulation
!! namsbc_clio CLIO bulk formulae formulation
!! namsbc_core CORE bulk formulae formulation
!! namsbc_mfs MFS bulk formulae formulation
!! namsbc_cpl CouPLed formulation ("key_oasis3")
!! namsbc_sas StAndalone Surface module
!! namtra_qsr penetrative solar radiation
!! namsbc_rnf river runoffs
!! namsbc_isf ice shelf melting/freezing
!! namsbc_apr Atmospheric Pressure
!! namsbc_ssr sea surface restoring term (for T and/or S)
!! namsbc_alb albedo parameters
!!======================================================================
!
!-----------------------------------------------------------------------
&namsbc ! Surface Boundary Condition (surface module)
!-----------------------------------------------------------------------
nn_fsbc = 5 ! frequency of surface boundary condition computation
! (also = the frequency of sea-ice model call)
ln_ana = .false. ! analytical formulation (T => fill namsbc_ana )
ln_flx = .false. ! flux formulation (T => fill namsbc_flx )
ln_blk_clio = .false. ! CLIO bulk formulation (T => fill namsbc_clio)
ln_blk_core = .true. ! CORE bulk formulation (T => fill namsbc_core)
ln_blk_mfs = .false. ! MFS bulk formulation (T => fill namsbc_mfs )
ln_cpl = .false. ! atmosphere coupled formulation ( requires key_oasis3 )
ln_mixcpl = .false. ! forced-coupled mixed formulation ( requires key_oasis3 )
nn_components = 0 ! configuration of the opa-sas OASIS coupling
! =0 no opa-sas OASIS coupling: default single executable configuration
! =1 opa-sas OASIS coupling: multi executable configuration, OPA component
! =2 opa-sas OASIS coupling: multi executable configuration, SAS component
ln_apr_dyn = .false. ! Patm gradient added in ocean & ice Eqs. (T => fill namsbc_apr )
nn_ice = 2 ! =0 no ice boundary condition ,
! =1 use observed ice-cover ,
! =2 ice-model used ("key_lim3" or "key_lim2")
nn_ice_embd = 1 ! =0 levitating ice (no mass exchange, concentration/dilution effect)
! =1 levitating ice with mass and salt exchange but no presure effect
! =2 embedded sea-ice (full salt and mass exchanges and pressure)
ln_dm2dc = .false. ! daily mean to diurnal cycle on short wave
ln_rnf = .true. ! runoffs (T => fill namsbc_rnf)
nn_isf = 0 ! ice shelf melting/freezing (/=0 => fill namsbc_isf)
! 0 =no isf 1 = presence of ISF
! 2 = bg03 parametrisation 3 = rnf file for isf
! 4 = ISF fwf specified
! option 1 and 4 need ln_isfcav = .true. (domzgr)
ln_ssr = .true. ! Sea Surface Restoring on T and/or S (T => fill namsbc_ssr)
nn_fwb = 2 ! FreshWater Budget: =0 unchecked
! =1 global mean of e-p-r set to zero at each time step
! =2 annual global mean of e-p-r set to zero
ln_wave = .false. ! Activate coupling with wave (either Stokes Drift or Drag coefficient, or both) (T => fill namsbc_wave)
ln_cdgw = .false. ! Neutral drag coefficient read from wave model (T => fill namsbc_wave)
ln_sdw = .false. ! Computation of 3D stokes drift (T => fill namsbc_wave)
nn_lsm = 0 ! =0 land/sea mask for input fields is not applied (keep empty land/sea mask filename field) ,
! =1:n number of iterations of land/sea mask application for input fields (fill land/sea mask filename field)
nn_limflx = -1 ! LIM3 Multi-category heat flux formulation (use -1 if LIM3 is not used)
! =-1 Use per-category fluxes, bypass redistributor, forced mode only, not yet implemented coupled
! = 0 Average per-category fluxes (forced and coupled mode)
! = 1 Average and redistribute per-category fluxes, forced mode only, not yet implemented coupled
! = 2 Redistribute a single flux over categories (coupled mode only)
/
!-----------------------------------------------------------------------
&namsbc_ana ! analytical surface boundary condition
!-----------------------------------------------------------------------
nn_tau000 = 0 ! gently increase the stress over the first ntau_rst time-steps
rn_utau0 = 0.5 ! uniform value for the i-stress
rn_vtau0 = 0.e0 ! uniform value for the j-stress
rn_qns0 = 0.e0 ! uniform value for the total heat flux
rn_qsr0 = 0.e0 ! uniform value for the solar radiation
rn_emp0 = 0.e0 ! uniform value for the freswater budget (E-P)
/
!-----------------------------------------------------------------------
&namsbc_flx ! surface boundary condition : flux formulation
!-----------------------------------------------------------------------
! ! file name ! frequency (hours) ! variable ! time interp. ! clim ! 'yearly'/ ! weights ! rotation ! land/sea mask !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! filename ! pairing ! filename !
sn_utau = 'utau' , 24 , 'utau' , .false. , .false., 'yearly' , '' , '' , ''
sn_vtau = 'vtau' , 24 , 'vtau' , .false. , .false., 'yearly' , '' , '' , ''
sn_qtot = 'qtot' , 24 , 'qtot' , .false. , .false., 'yearly' , '' , '' , ''
sn_qsr = 'qsr' , 24 , 'qsr' , .false. , .false., 'yearly' , '' , '' , ''
sn_emp = 'emp' , 24 , 'emp' , .false. , .false., 'yearly' , '' , '' , ''
cn_dir = './' ! root directory for the location of the flux files
/
!-----------------------------------------------------------------------
&namsbc_clio ! namsbc_clio CLIO bulk formulae
!-----------------------------------------------------------------------
! ! file name ! frequency (hours) ! variable ! time interp. ! clim ! 'yearly'/ ! weights ! rotation ! land/sea mask !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! filename ! pairing ! filename !
sn_utau = 'taux_1m' , -1 , 'sozotaux', .true. , .true. , 'yearly' , '' , '' , ''
sn_vtau = 'tauy_1m' , -1 , 'sometauy', .true. , .true. , 'yearly' , '' , '' , ''
sn_wndm = 'flx' , -1 , 'socliowi', .true. , .true. , 'yearly' , '' , '' , ''
sn_tair = 'flx' , -1 , 'socliot2', .true. , .true. , 'yearly' , '' , '' , ''
sn_humi = 'flx' , -1 , 'socliohu', .true. , .true. , 'yearly' , '' , '' , ''
sn_ccov = 'flx' , -1 , 'socliocl', .false. , .true. , 'yearly' , '' , '' , ''
sn_prec = 'flx' , -1 , 'socliopl', .false. , .true. , 'yearly' , '' , '' , ''
cn_dir = './' ! root directory for the location of the bulk files are
/
!-----------------------------------------------------------------------
&namsbc_core ! namsbc_core CORE bulk formulae
!-----------------------------------------------------------------------
! ! file name ! frequency (hours) ! variable ! time interp. ! clim ! 'yearly'/ ! weights ! rotation ! land/sea mask !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! filename ! pairing ! filename !
sn_wndi = 'u_10.15JUNE2009_fill' , 6 , 'U_10_MOD', .false. , .true. , 'yearly' , 'weights_core_orca2_bicubic_noc.nc' , 'Uwnd' , ''
sn_wndj = 'v_10.15JUNE2009_fill' , 6 , 'V_10_MOD', .false. , .true. , 'yearly' , 'weights_core_orca2_bicubic_noc.nc' , 'Vwnd' , ''
sn_qsr = 'ncar_rad.15JUNE2009_fill' , 24 , 'SWDN_MOD', .false. , .true. , 'yearly' , 'weights_core_orca2_bilinear_noc.nc' , '' , ''
sn_qlw = 'ncar_rad.15JUNE2009_fill' , 24 , 'LWDN_MOD', .false. , .true. , 'yearly' , 'weights_core_orca2_bilinear_noc.nc' , '' , ''
sn_tair = 't_10.15JUNE2009_fill' , 6 , 'T_10_MOD', .false. , .true. , 'yearly' , 'weights_core_orca2_bilinear_noc.nc' , '' , ''
sn_humi = 'q_10.15JUNE2009_fill' , 6 , 'Q_10_MOD', .false. , .true. , 'yearly' , 'weights_core_orca2_bilinear_noc.nc' , '' , ''
sn_prec = 'ncar_precip.15JUNE2009_fill' , -1 , 'PRC_MOD1', .false. , .true. , 'yearly' , 'weights_core_orca2_bilinear_noc.nc' , '' , ''
sn_snow = 'ncar_precip.15JUNE2009_fill' , -1 , 'SNOW' , .false. , .true. , 'yearly' , 'weights_core_orca2_bilinear_noc.nc' , '' , ''
sn_tdif = 'taudif_core' , 24 , 'taudif' , .false. , .true. , 'yearly' , 'weights_core_orca2_bilinear_noc.nc' , '' , ''
cn_dir = './' ! root directory for the location of the bulk files
ln_taudif = .false. ! HF tau contribution: use "mean of stress module - module of the mean stress" data
rn_zqt = 10. ! Air temperature and humidity reference height (m)
rn_zu = 10. ! Wind vector reference height (m)
rn_pfac = 1. ! multiplicative factor for precipitation (total & snow)
rn_efac = 1. ! multiplicative factor for evaporation (0. or 1.)
rn_vfac = 0. ! multiplicative factor for ocean/ice velocity
! in the calculation of the wind stress (0.=absolute winds or 1.=relative winds)
/
!-----------------------------------------------------------------------
&namsbc_mfs ! namsbc_mfs MFS bulk formulae
!-----------------------------------------------------------------------
! ! file name ! frequency (hours) ! variable ! time interp. ! clim ! 'yearly'/ ! weights ! rotation ! land/sea mask !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! filename ! pairing ! filename !
sn_wndi = 'ecmwf' , 6 , 'u10' , .true. , .false. , 'daily' ,'bicubic.nc' , '' , ''
sn_wndj = 'ecmwf' , 6 , 'v10' , .true. , .false. , 'daily' ,'bicubic.nc' , '' , ''
sn_clc = 'ecmwf' , 6 , 'clc' , .true. , .false. , 'daily' ,'bilinear.nc', '' , ''
sn_msl = 'ecmwf' , 6 , 'msl' , .true. , .false. , 'daily' ,'bicubic.nc' , '' , ''
sn_tair = 'ecmwf' , 6 , 't2' , .true. , .false. , 'daily' ,'bicubic.nc' , '' , ''
sn_rhm = 'ecmwf' , 6 , 'rh' , .true. , .false. , 'daily' ,'bilinear.nc', '' , ''
sn_prec = 'ecmwf' , 6 , 'precip' , .true. , .true. , 'daily' ,'bicubic.nc' , '' , ''
cn_dir = './ECMWF/' ! root directory for the location of the bulk files
/
!-----------------------------------------------------------------------
&namsbc_cpl ! coupled ocean/atmosphere model ("key_oasis3")
!-----------------------------------------------------------------------
! ! description ! multiple ! vector ! vector ! vector !
! ! ! categories ! reference ! orientation ! grids !
! send
sn_snd_temp = 'weighted oce and ice' , 'no' , '' , '' , ''
sn_snd_alb = 'weighted ice' , 'no' , '' , '' , ''
sn_snd_thick = 'none' , 'no' , '' , '' , ''
sn_snd_crt = 'none' , 'no' , 'spherical' , 'eastward-northward' , 'T'
sn_snd_co2 = 'coupled' , 'no' , '' , '' , ''
! receive
sn_rcv_w10m = 'none' , 'no' , '' , '' , ''
sn_rcv_taumod = 'coupled' , 'no' , '' , '' , ''
sn_rcv_tau = 'oce only' , 'no' , 'cartesian' , 'eastward-northward', 'U,V'
sn_rcv_dqnsdt = 'coupled' , 'no' , '' , '' , ''
sn_rcv_qsr = 'oce and ice' , 'no' , '' , '' , ''
sn_rcv_qns = 'oce and ice' , 'no' , '' , '' , ''
sn_rcv_emp = 'conservative' , 'no' , '' , '' , ''
sn_rcv_rnf = 'coupled' , 'no' , '' , '' , ''
sn_rcv_cal = 'coupled' , 'no' , '' , '' , ''
sn_rcv_co2 = 'coupled' , 'no' , '' , '' , ''
!
nn_cplmodel = 1 ! Maximum number of models to/from which NEMO is potentialy sending/receiving data
ln_usecplmask = .false. ! use a coupling mask file to merge data received from several models
! -> file cplmask.nc with the float variable called cplmask (jpi,jpj,nn_cplmodel)
/
!-----------------------------------------------------------------------
&namsbc_sas ! analytical surface boundary condition
!-----------------------------------------------------------------------
! ! file name ! frequency (hours) ! variable ! time interp. ! clim ! 'yearly'/ ! weights ! rotation ! land/sea mask !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! filename ! pairing ! filename !
sn_usp = 'sas_grid_U' , 120 , 'vozocrtx' , .true. , .true. , 'yearly' , '' , '' , ''
sn_vsp = 'sas_grid_V' , 120 , 'vomecrty' , .true. , .true. , 'yearly' , '' , '' , ''
sn_tem = 'sas_grid_T' , 120 , 'sosstsst' , .true. , .true. , 'yearly' , '' , '' , ''
sn_sal = 'sas_grid_T' , 120 , 'sosaline' , .true. , .true. , 'yearly' , '' , '' , ''
sn_ssh = 'sas_grid_T' , 120 , 'sossheig' , .true. , .true. , 'yearly' , '' , '' , ''
sn_e3t = 'sas_grid_T' , 120 , 'e3t_m' , .true. , .true. , 'yearly' , '' , '' , ''
sn_frq = 'sas_grid_T' , 120 , 'frq_m' , .true. , .true. , 'yearly' , '' , '' , ''
ln_3d_uve = .true. ! specify whether we are supplying a 3D u,v and e3 field
ln_read_frq = .false. ! specify whether we must read frq or not
cn_dir = './' ! root directory for the location of the bulk files are
/
!-----------------------------------------------------------------------
&namtra_qsr ! penetrative solar radiation
!-----------------------------------------------------------------------
! ! file name ! frequency (hours) ! variable ! time interp. ! clim ! 'yearly'/ ! weights ! rotation ! land/sea mask !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! filename ! pairing ! filename !
sn_chl ='chlorophyll', -1 , 'CHLA' , .true. , .true. , 'yearly' , '' , '' , ''
cn_dir = './' ! root directory for the location of the runoff files
ln_traqsr = .true. ! Light penetration (T) or not (F)
ln_qsr_rgb = .true. ! RGB (Red-Green-Blue) light penetration
ln_qsr_2bd = .false. ! 2 bands light penetration
ln_qsr_bio = .false. ! bio-model light penetration
nn_chldta = 1 ! RGB : 2D Chl data (=1), 3D Chl data (=2) or cst value (=0)
rn_abs = 0.58 ! RGB & 2 bands: fraction of light (rn_si1)
rn_si0 = 0.35 ! RGB & 2 bands: shortess depth of extinction
rn_si1 = 23.0 ! 2 bands: longest depth of extinction
ln_qsr_ice = .true. ! light penetration for ice-model LIM3
/
!-----------------------------------------------------------------------
&namsbc_rnf ! runoffs namelist surface boundary condition
!-----------------------------------------------------------------------
! ! file name ! frequency (hours) ! variable ! time interp. ! clim ! 'yearly'/ ! weights ! rotation ! land/sea mask !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! filename ! pairing ! filename !
sn_rnf = 'runoff_core_monthly', -1 , 'sorunoff', .true. , .true. , 'yearly' , '' , '' , ''
sn_cnf = 'runoff_core_monthly', 0 , 'socoefr0', .false. , .true. , 'yearly' , '' , '' , ''
sn_s_rnf = 'runoffs' , 24 , 'rosaline', .true. , .true. , 'yearly' , '' , '' , ''
sn_t_rnf = 'runoffs' , 24 , 'rotemper', .true. , .true. , 'yearly' , '' , '' , ''
sn_dep_rnf = 'runoffs' , 0 , 'rodepth' , .false. , .true. , 'yearly' , '' , '' , ''
cn_dir = './' ! root directory for the location of the runoff files
ln_rnf_mouth = .true. ! specific treatment at rivers mouths
rn_hrnf = 15.e0 ! depth over which enhanced vertical mixing is used
rn_avt_rnf = 1.e-3 ! value of the additional vertical mixing coef. [m2/s]
rn_rfact = 1.e0 ! multiplicative factor for runoff
ln_rnf_depth = .false. ! read in depth information for runoff
ln_rnf_tem = .false. ! read in temperature information for runoff
ln_rnf_sal = .false. ! read in salinity information for runoff
ln_rnf_depth_ini = .false. ! compute depth at initialisation from runoff file
rn_rnf_max = 5.735e-4 ! max value of the runoff climatologie over global domain ( ln_rnf_depth_ini = .true )
rn_dep_max = 150. ! depth over which runoffs is spread ( ln_rnf_depth_ini = .true )
nn_rnf_depth_file = 0 ! create (=1) a runoff depth file or not (=0)
/
!-----------------------------------------------------------------------
&namsbc_isf ! Top boundary layer (ISF)
!-----------------------------------------------------------------------
! ! file name ! frequency (hours) ! variable ! time interpol. ! clim ! 'yearly'/ ! weights ! rotation !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! filename ! pairing !
! nn_isf == 4
sn_qisf = 'rnfisf' , -12 ,'sohflisf', .false. , .true. , 'yearly' , '' , ''
sn_fwfisf = 'rnfisf' , -12 ,'sowflisf', .false. , .true. , 'yearly' , '' , ''
! nn_isf == 3
sn_rnfisf = 'runoffs' , -12 ,'sofwfisf', .false. , .true. , 'yearly' , '' , ''
! nn_isf == 2 and 3
sn_depmax_isf = 'runoffs' , -12 ,'sozisfmax' , .false. , .true. , 'yearly' , '' , ''
sn_depmin_isf = 'runoffs' , -12 ,'sozisfmin' , .false. , .true. , 'yearly' , '' , ''
! nn_isf == 2
sn_Leff_isf = 'rnfisf' , 0 ,'Leff' , .false. , .true. , 'yearly' , '' , ''
! for all case
ln_divisf = .true. ! apply isf melting as a mass flux or in the salinity trend. (maybe I should remove this option as for runoff?)
! only for nn_isf = 1 or 2
rn_gammat0 = 1.0e-4 ! gammat coefficient used in blk formula
rn_gammas0 = 1.0e-4 ! gammas coefficient used in blk formula
! only for nn_isf = 1
nn_isfblk = 1 ! 1 ISOMIP ; 2 conservative (3 equation formulation, Jenkins et al. 1991 ??)
rn_hisf_tbl = 30. ! thickness of the top boundary layer (Losh et al. 2008)
! 0 => thickness of the tbl = thickness of the first wet cell
ln_conserve = .true. ! conservative case (take into account meltwater advection)
nn_gammablk = 1 ! 0 = cst Gammat (= gammat/s)
! 1 = velocity dependend Gamma (u* * gammat/s) (Jenkins et al. 2010)
! if you want to keep the cd as in global config, adjust rn_gammat0 to compensate
! 2 = velocity and stability dependent Gamma Holland et al. 1999
/
!-----------------------------------------------------------------------
&namsbc_apr ! Atmospheric pressure used as ocean forcing or in bulk
!-----------------------------------------------------------------------
! ! file name ! frequency (hours) ! variable ! time interp. ! clim ! 'yearly'/ ! weights ! rotation ! land/sea mask !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! filename ! pairing ! filename !
sn_apr = 'patm' , -1 ,'somslpre', .true. , .true. , 'yearly' , '' , '' , ''
cn_dir = './' ! root directory for the location of the bulk files
rn_pref = 101000. ! reference atmospheric pressure [N/m2]/
ln_ref_apr = .false. ! ref. pressure: global mean Patm (T) or a constant (F)
ln_apr_obc = .false. ! inverse barometer added to OBC ssh data
/
!-----------------------------------------------------------------------
&namsbc_ssr ! surface boundary condition : sea surface restoring
!-----------------------------------------------------------------------
! ! file name ! frequency (hours) ! variable ! time interp. ! clim ! 'yearly'/ ! weights ! rotation ! land/sea mask !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! filename ! pairing ! filename !
sn_sst = 'sst_data' , 24 , 'sst' , .false. , .false., 'yearly' , '' , '' , ''
sn_sss = 'sss_data' , -1 , 'sss' , .true. , .true. , 'yearly' , '' , '' , ''
cn_dir = './' ! root directory for the location of the runoff files
nn_sstr = 0 ! add a retroaction term in the surface heat flux (=1) or not (=0)
nn_sssr = 2 ! add a damping term in the surface freshwater flux (=2)
! or to SSS only (=1) or no damping term (=0)
rn_dqdt = -40. ! magnitude of the retroaction on temperature [W/m2/K]
rn_deds = -166.67 ! magnitude of the damping on salinity [mm/day]
ln_sssr_bnd = .true. ! flag to bound erp term (associated with nn_sssr=2)
rn_sssr_bnd = 4.e0 ! ABS(Max/Min) value of the damping erp term [mm/day]
/
!-----------------------------------------------------------------------
&namsbc_alb ! albedo parameters
!-----------------------------------------------------------------------
nn_ice_alb = 1 ! parameterization of ice/snow albedo
! 0: Shine & Henderson-Sellers (JGR 1985), giving clear-sky albedo
! 1: "home made" based on Brandt et al. (JClim 2005) and Grenfell & Perovich (JGR 2004),
! giving cloud-sky albedo
rn_alb_sdry = 0.85 ! dry snow albedo : 0.80 (nn_ice_alb = 0); 0.85 (nn_ice_alb = 1); obs 0.85-0.87 (cloud-sky)
rn_alb_smlt = 0.75 ! melting snow albedo : 0.65 ( '' ) ; 0.75 ( '' ) ; obs 0.72-0.82 ( '' )
rn_alb_idry = 0.60 ! dry ice albedo : 0.72 ( '' ) ; 0.60 ( '' ) ; obs 0.54-0.65 ( '' )
rn_alb_imlt = 0.50 ! bare puddled ice albedo : 0.53 ( '' ) ; 0.50 ( '' ) ; obs 0.49-0.58 ( '' )
/
!-----------------------------------------------------------------------
&namberg ! iceberg parameters
!-----------------------------------------------------------------------
ln_icebergs = .false.
ln_bergdia = .true. ! Calculate budgets
nn_verbose_level = 1 ! Turn on more verbose output if level > 0
nn_verbose_write = 15 ! Timesteps between verbose messages
nn_sample_rate = 1 ! Timesteps between sampling for trajectory storage
! Initial mass required for an iceberg of each class
rn_initial_mass = 8.8e7, 4.1e8, 3.3e9, 1.8e10, 3.8e10, 7.5e10, 1.2e11, 2.2e11, 3.9e11, 7.4e11
! Proportion of calving mass to apportion to each class
rn_distribution = 0.24, 0.12, 0.15, 0.18, 0.12, 0.07, 0.03, 0.03, 0.03, 0.02
! Ratio between effective and real iceberg mass (non-dim)
! i.e. number of icebergs represented at a point
rn_mass_scaling = 2000, 200, 50, 20, 10, 5, 2, 1, 1, 1
! thickness of newly calved bergs (m)
rn_initial_thickness = 40., 67., 133., 175., 250., 250., 250., 250., 250., 250.
rn_rho_bergs = 850. ! Density of icebergs
rn_LoW_ratio = 1.5 ! Initial ratio L/W for newly calved icebergs
ln_operator_splitting = .true. ! Use first order operator splitting for thermodynamics
rn_bits_erosion_fraction = 0. ! Fraction of erosion melt flux to divert to bergy bits
rn_sicn_shift = 0. ! Shift of sea-ice concn in erosion flux (0<sicn_shift<1)
ln_passive_mode = .false. ! iceberg - ocean decoupling
nn_test_icebergs = 10 ! Create test icebergs of this class (-1 = no)
! Put a test iceberg at each gridpoint in box (lon1,lon2,lat1,lat2)
rn_test_box = 108.0, 116.0, -66.0, -58.0
rn_speed_limit = 0. ! CFL speed limit for a berg
! ! file name ! frequency (hours) ! variable ! time interp. ! clim ! 'yearly'/ ! weights ! rotation ! land/sea mask !
! ! ! (if <0 months) ! name ! (logical) ! (T/F ) ! 'monthly' ! filename ! pairing ! filename !
sn_icb = 'calving' , -1 , 'calvingmask', .true. , .true. , 'yearly' , '' , '' , ''
cn_dir = './'
/
!!======================================================================
!! *** Lateral boundary condition ***
!!======================================================================
!! namlbc lateral momentum boundary condition
!! namcla cross land advection
!! namagrif agrif nested grid ( read by child model only ) ("key_agrif")
!! nambdy Unstructured open boundaries ("key_bdy")
!! namtide Tidal forcing at open boundaries ("key_bdy_tides")
!!======================================================================
!
!-----------------------------------------------------------------------
&namlbc ! lateral momentum boundary condition
!-----------------------------------------------------------------------
rn_shlat = 2. ! shlat = 0 ! 0 < shlat < 2 ! shlat = 2 ! 2 < shlat
! free slip ! partial slip ! no slip ! strong slip
ln_vorlat = .false. ! consistency of vorticity boundary condition with analytical eqs.
/
!-----------------------------------------------------------------------
&namcla ! cross land advection
!-----------------------------------------------------------------------
nn_cla = 0 ! advection between 2 ocean pts separates by land
/
!-----------------------------------------------------------------------
&namagrif ! AGRIF zoom ("key_agrif")
!-----------------------------------------------------------------------
nn_cln_update = 3 ! baroclinic update frequency
ln_spc_dyn = .true. ! use 0 as special value for dynamics
rn_sponge_tra = 2880. ! coefficient for tracer sponge layer [m2/s]
rn_sponge_dyn = 2880. ! coefficient for dynamics sponge layer [m2/s]
/
!-----------------------------------------------------------------------
&nam_tide ! tide parameters (#ifdef key_tide)
!-----------------------------------------------------------------------
ln_tide_pot = .true. ! use tidal potential forcing
ln_tide_ramp = .false. !
rdttideramp = 0. !
clname(1) = 'DUMMY' ! name of constituent - all tidal components must be set in namelist_cfg
/
!-----------------------------------------------------------------------
&nambdy ! unstructured open boundaries ("key_bdy")
!-----------------------------------------------------------------------
nb_bdy = 0 ! number of open boundary sets
ln_coords_file = .true. ! =T : read bdy coordinates from file
cn_coords_file = 'coordinates.bdy.nc' ! bdy coordinates files
ln_mask_file = .false. ! =T : read mask from file
cn_mask_file = '' ! name of mask file (if ln_mask_file=.TRUE.)
cn_dyn2d = 'none' !
nn_dyn2d_dta = 0 ! = 0, bdy data are equal to the initial state
! = 1, bdy data are read in 'bdydata .nc' files
! = 2, use tidal harmonic forcing data from files
! = 3, use external data AND tidal harmonic forcing
cn_dyn3d = 'none' !
nn_dyn3d_dta = 0 ! = 0, bdy data are equal to the initial state
! = 1, bdy data are read in 'bdydata .nc' files
cn_tra = 'none' !
nn_tra_dta = 0 ! = 0, bdy data are equal to the initial state
! = 1, bdy data are read in 'bdydata .nc' files
cn_ice_lim = 'none' !
nn_ice_lim_dta = 0 ! = 0, bdy data are equal to the initial state
! = 1, bdy data are read in 'bdydata .nc' files
rn_ice_tem = 270. ! lim3 only: arbitrary temperature of incoming sea ice
rn_ice_sal = 10. ! lim3 only: -- salinity --
rn_ice_age = 30. ! lim3 only: -- age --
ln_tra_dmp =.false. ! open boudaries conditions for tracers
ln_dyn3d_dmp =.false. ! open boundary condition for baroclinic velocities
rn_time_dmp = 1. ! Damping time scale in days
rn_time_dmp_out = 1. ! Outflow damping time scale
nn_rimwidth = 10 ! width of the relaxation zone
ln_vol = .false. ! total volume correction (see nn_volctl parameter)
nn_volctl = 1 ! = 0, the total water flux across open boundaries is zero
/
!-----------------------------------------------------------------------
&nambdy_dta ! open boundaries - external data ("key_bdy")
!-----------------------------------------------------------------------
! ! file name ! frequency (hours) ! variable ! time interp. ! clim ! 'yearly'/ ! weights ! rotation ! land/sea mask !
! ! ! (if <0 months) ! name ! (logical) ! (T/F ) ! 'monthly' ! filename ! pairing ! filename !
bn_ssh = 'amm12_bdyT_u2d' , 24 , 'sossheig' , .true. , .false. , 'daily' , '' , '' , ''
bn_u2d = 'amm12_bdyU_u2d' , 24 , 'vobtcrtx' , .true. , .false. , 'daily' , '' , '' , ''
bn_v2d = 'amm12_bdyV_u2d' , 24 , 'vobtcrty' , .true. , .false. , 'daily' , '' , '' , ''
bn_u3d = 'amm12_bdyU_u3d' , 24 , 'vozocrtx' , .true. , .false. , 'daily' , '' , '' , ''
bn_v3d = 'amm12_bdyV_u3d' , 24 , 'vomecrty' , .true. , .false. , 'daily' , '' , '' , ''
bn_tem = 'amm12_bdyT_tra' , 24 , 'votemper' , .true. , .false. , 'daily' , '' , '' , ''
bn_sal = 'amm12_bdyT_tra' , 24 , 'vosaline' , .true. , .false. , 'daily' , '' , '' , ''
! for lim2
! bn_frld = 'amm12_bdyT_ice' , 24 , 'ileadfra' , .true. , .false. , 'daily' , '' , '' , ''
! bn_hicif = 'amm12_bdyT_ice' , 24 , 'iicethic' , .true. , .false. , 'daily' , '' , '' , ''
! bn_hsnif = 'amm12_bdyT_ice' , 24 , 'isnowthi' , .true. , .false. , 'daily' , '' , '' , ''
! for lim3
! bn_a_i = 'amm12_bdyT_ice' , 24 , 'ileadfra' , .true. , .false. , 'daily' , '' , '' , ''
! bn_ht_i = 'amm12_bdyT_ice' , 24 , 'iicethic' , .true. , .false. , 'daily' , '' , '' , ''
! bn_ht_s = 'amm12_bdyT_ice' , 24 , 'isnowthi' , .true. , .false. , 'daily' , '' , '' , ''
cn_dir = 'bdydta/'
ln_full_vel = .false.
/
!-----------------------------------------------------------------------
&nambdy_tide ! tidal forcing at open boundaries
!-----------------------------------------------------------------------
filtide = 'bdydta/amm12_bdytide_' ! file name root of tidal forcing files
ln_bdytide_2ddta = .false.
ln_bdytide_conj = .false.
/
!!======================================================================
!! *** Bottom boundary condition ***
!!======================================================================
!! nambfr bottom friction
!! nambbc bottom temperature boundary condition
!! nambbl bottom boundary layer scheme ("key_trabbl")
!!======================================================================
!
!-----------------------------------------------------------------------
&nambfr ! bottom friction
!-----------------------------------------------------------------------
nn_bfr = 1 ! type of bottom friction : = 0 : free slip, = 1 : linear friction
! = 2 : nonlinear friction
rn_bfri1 = 4.e-4 ! bottom drag coefficient (linear case)
rn_bfri2 = 1.e-3 ! bottom drag coefficient (non linear case). Minimum coeft if ln_loglayer=T
rn_bfri2_max = 1.e-1 ! max. bottom drag coefficient (non linear case and ln_loglayer=T)
rn_bfeb2 = 2.5e-3 ! bottom turbulent kinetic energy background (m2/s2)
rn_bfrz0 = 3.e-3 ! bottom roughness [m] if ln_loglayer=T
ln_bfr2d = .false. ! horizontal variation of the bottom friction coef (read a 2D mask file )
rn_bfrien = 50. ! local multiplying factor of bfr (ln_bfr2d=T)
rn_tfri1 = 4.e-4 ! top drag coefficient (linear case)
rn_tfri2 = 2.5e-3 ! top drag coefficient (non linear case). Minimum coeft if ln_loglayer=T
rn_tfri2_max = 1.e-1 ! max. top drag coefficient (non linear case and ln_loglayer=T)
rn_tfeb2 = 0.0 ! top turbulent kinetic energy background (m2/s2)
rn_tfrz0 = 3.e-3 ! top roughness [m] if ln_loglayer=T
ln_tfr2d = .false. ! horizontal variation of the top friction coef (read a 2D mask file )
rn_tfrien = 50. ! local multiplying factor of tfr (ln_tfr2d=T)
ln_bfrimp = .true. ! implicit bottom friction (requires ln_zdfexp = .false. if true)
ln_loglayer = .false. ! logarithmic formulation (non linear case)
/
!-----------------------------------------------------------------------
&nambbc ! bottom temperature boundary condition
!-----------------------------------------------------------------------
! ! ! (if <0 months) !
! ! file name ! frequency (hours) ! variable ! time interp. ! clim ! 'yearly'/ ! weights ! rotation ! land/sea mask !
! ! ! (if <0 months) ! name ! (logical) ! (T/F ) ! 'monthly' ! filename ! pairing ! filename !
sn_qgh ='geothermal_heating.nc', -12. , 'heatflow' , .false. , .true. , 'yearly' , '' , '' , ''
!
cn_dir = './' ! root directory for the location of the runoff files
ln_trabbc = .true. ! Apply a geothermal heating at the ocean bottom
nn_geoflx = 2 ! geothermal heat flux: = 0 no flux
! = 1 constant flux
! = 2 variable flux (read in geothermal_heating.nc in mW/m2)
rn_geoflx_cst = 86.4e-3 ! Constant value of geothermal heat flux [W/m2]
/
!-----------------------------------------------------------------------
&nambbl ! bottom boundary layer scheme
!-----------------------------------------------------------------------
nn_bbl_ldf = 1 ! diffusive bbl (=1) or not (=0)
nn_bbl_adv = 0 ! advective bbl (=1/2) or not (=0)
rn_ahtbbl = 1000. ! lateral mixing coefficient in the bbl [m2/s]
rn_gambbl = 10. ! advective bbl coefficient [s]
/
!!======================================================================
!! Tracer (T & S ) namelists
!!======================================================================
!! nameos equation of state
!! namtra_adv advection scheme
!! namtra_adv_mle mixed layer eddy param. (Fox-Kemper param.)
!! namtra_ldf lateral diffusion scheme
!! namtra_dmp T & S newtonian damping
!!======================================================================
!
!-----------------------------------------------------------------------
&nameos ! ocean physical parameters
!-----------------------------------------------------------------------
nn_eos = -1 ! type of equation of state and Brunt-Vaisala frequency
! =-1, TEOS-10
! = 0, EOS-80
! = 1, S-EOS (simplified eos)
ln_useCT = .true. ! use of Conservative Temp. ==> surface CT converted in Pot. Temp. in sbcssm
! !
! ! S-EOS coefficients :
! ! rd(T,S,Z)*rau0 = -a0*(1+.5*lambda*dT+mu*Z+nu*dS)*dT+b0*dS
rn_a0 = 1.6550e-1 ! thermal expension coefficient (nn_eos= 1)
rn_b0 = 7.6554e-1 ! saline expension coefficient (nn_eos= 1)
rn_lambda1 = 5.9520e-2 ! cabbeling coeff in T^2 (=0 for linear eos)
rn_lambda2 = 7.4914e-4 ! cabbeling coeff in S^2 (=0 for linear eos)
rn_mu1 = 1.4970e-4 ! thermobaric coeff. in T (=0 for linear eos)
rn_mu2 = 1.1090e-5 ! thermobaric coeff. in S (=0 for linear eos)
rn_nu = 2.4341e-3 ! cabbeling coeff in T*S (=0 for linear eos)
/
!-----------------------------------------------------------------------
&namtra_adv ! advection scheme for tracer
!-----------------------------------------------------------------------
ln_traadv_cen2 = .false. ! 2nd order centered scheme
ln_traadv_tvd = .true. ! TVD scheme
ln_traadv_muscl = .false. ! MUSCL scheme
ln_traadv_muscl2 = .false. ! MUSCL2 scheme + cen2 at boundaries
ln_traadv_ubs = .false. ! UBS scheme
ln_traadv_qck = .false. ! QUICKEST scheme
ln_traadv_msc_ups= .false. ! use upstream scheme within muscl
ln_traadv_tvd_zts= .false. ! TVD scheme with sub-timestepping of vertical tracer advection
/
!-----------------------------------------------------------------------
&namtra_adv_mle ! mixed layer eddy parametrisation (Fox-Kemper param)
!-----------------------------------------------------------------------
ln_mle = .true. ! (T) use the Mixed Layer Eddy (MLE) parameterisation
rn_ce = 0.06 ! magnitude of the MLE (typical value: 0.06 to 0.08)
nn_mle = 1 ! MLE type: =0 standard Fox-Kemper ; =1 new formulation
rn_lf = 5.e+3 ! typical scale of mixed layer front (meters) (case rn_mle=0)
rn_time = 172800. ! time scale for mixing momentum across the mixed layer (seconds) (case rn_mle=0)
rn_lat = 20. ! reference latitude (degrees) of MLE coef. (case rn_mle=1)
nn_mld_uv = 0 ! space interpolation of MLD at u- & v-pts (0=min,1=averaged,2=max)
nn_conv = 0 ! =1 no MLE in case of convection ; =0 always MLE
rn_rho_c_mle = 0.01 ! delta rho criterion used to calculate MLD for FK
/
!----------------------------------------------------------------------------------
&namtra_ldf ! lateral diffusion scheme for tracers
!----------------------------------------------------------------------------------
! ! Operator type:
ln_traldf_lap = .true. ! laplacian operator
ln_traldf_bilap = .false. ! bilaplacian operator
! ! Direction of action:
ln_traldf_level = .false. ! iso-level
ln_traldf_hor = .false. ! horizontal (geopotential) (needs "key_ldfslp" when ln_sco=T)
ln_traldf_iso = .true. ! iso-neutral (needs "key_ldfslp")
! ! Griffies parameters (all need "key_ldfslp")
ln_traldf_grif = .false. ! use griffies triads
ln_traldf_gdia = .false. ! output griffies eddy velocities
ln_triad_iso = .false. ! pure lateral mixing in ML
ln_botmix_grif = .false. ! lateral mixing on bottom
! ! Coefficients
! Eddy-induced (GM) advection always used with Griffies; otherwise needs "key_traldf_eiv"
! Value rn_aeiv_0 is ignored unless = 0 with Held-Larichev spatially varying aeiv
! (key_traldf_c2d & key_traldf_eiv & key_orca_r2, _r1 or _r05)
rn_aeiv_0 = 2000. ! eddy induced velocity coefficient [m2/s]
rn_aht_0 = 2000. ! horizontal eddy diffusivity for tracers [m2/s]
rn_ahtb_0 = 0. ! background eddy diffusivity for ldf_iso [m2/s]
! (normally=0; not used with Griffies)
rn_slpmax = 0.01 ! slope limit
rn_chsmag = 1. ! multiplicative factor in Smagorinsky diffusivity
rn_smsh = 1. ! Smagorinsky diffusivity: = 0 - use only sheer
rn_aht_m = 2000. ! upper limit or stability criteria for lateral eddy diffusivity (m2/s)
/
!-----------------------------------------------------------------------
&namtra_dmp ! tracer: T & S newtonian damping
!-----------------------------------------------------------------------
ln_tradmp = .true. ! add a damping termn (T) or not (F)
nn_zdmp = 0 ! vertical shape =0 damping throughout the water column
! =1 no damping in the mixing layer (kz criteria)
! =2 no damping in the mixed layer (rho crieria)
cn_resto = 'resto.nc' ! Name of file containing restoration coefficient field (use dmp_tools to create this)
/
!!======================================================================
!! *** Dynamics namelists ***
!!======================================================================
!! namdyn_adv formulation of the momentum advection
!! namdyn_vor advection scheme
!! namdyn_hpg hydrostatic pressure gradient
!! namdyn_spg surface pressure gradient (CPP key only)
!! namdyn_ldf lateral diffusion scheme
!!======================================================================
!
!-----------------------------------------------------------------------
&namdyn_adv ! formulation of the momentum advection
!-----------------------------------------------------------------------
ln_dynadv_vec = .true. ! vector form (T) or flux form (F)
nn_dynkeg = 0 ! scheme for grad(KE): =0 C2 ; =1 Hollingsworth correction
ln_dynadv_cen2= .false. ! flux form - 2nd order centered scheme
ln_dynadv_ubs = .false. ! flux form - 3rd order UBS scheme
ln_dynzad_zts = .false. ! Use (T) sub timestepping for vertical momentum advection
/
!-----------------------------------------------------------------------
&nam_vvl ! vertical coordinate options
!-----------------------------------------------------------------------
ln_vvl_zstar = .true. ! zstar vertical coordinate
ln_vvl_ztilde = .false. ! ztilde vertical coordinate: only high frequency variations
ln_vvl_layer = .false. ! full layer vertical coordinate
ln_vvl_ztilde_as_zstar = .false. ! ztilde vertical coordinate emulating zstar
ln_vvl_zstar_at_eqtor = .false. ! ztilde near the equator
rn_ahe3 = 0.0e0 ! thickness diffusion coefficient
rn_rst_e3t = 30.e0 ! ztilde to zstar restoration timescale [days]
rn_lf_cutoff = 5.0e0 ! cutoff frequency for low-pass filter [days]
rn_zdef_max = 0.9e0 ! maximum fractional e3t deformation
ln_vvl_dbg = .false. ! debug prints (T/F)
/
!-----------------------------------------------------------------------
&namdyn_vor ! option of physics/algorithm (not control by CPP keys)
!-----------------------------------------------------------------------
ln_dynvor_ene = .false. ! enstrophy conserving scheme
ln_dynvor_ens = .false. ! energy conserving scheme
ln_dynvor_mix = .false. ! mixed scheme
ln_dynvor_een = .true. ! energy & enstrophy scheme
ln_dynvor_een_old = .false. ! energy & enstrophy scheme - original formulation
/
!-----------------------------------------------------------------------
&namdyn_hpg ! Hydrostatic pressure gradient option
!-----------------------------------------------------------------------
ln_hpg_zco = .false. ! z-coordinate - full steps
ln_hpg_zps = .true. ! z-coordinate - partial steps (interpolation)
ln_hpg_sco = .false. ! s-coordinate (standard jacobian formulation)
ln_hpg_isf = .false. ! s-coordinate (sco ) adapted to isf
ln_hpg_djc = .false. ! s-coordinate (Density Jacobian with Cubic polynomial)
ln_hpg_prj = .false. ! s-coordinate (Pressure Jacobian scheme)
ln_dynhpg_imp = .false. ! time stepping: semi-implicit time scheme (T)
! centered time scheme (F)
/
!-----------------------------------------------------------------------
!namdyn_spg ! surface pressure gradient (CPP key only)
!-----------------------------------------------------------------------
! ! explicit free surface ("key_dynspg_exp")
! ! filtered free surface ("key_dynspg_flt")
! ! split-explicit free surface ("key_dynspg_ts")
!-----------------------------------------------------------------------
&namdyn_ldf ! lateral diffusion on momentum
!-----------------------------------------------------------------------
! ! Type of the operator :
ln_dynldf_lap = .true. ! laplacian operator
ln_dynldf_bilap = .false. ! bilaplacian operator
! ! Direction of action :
ln_dynldf_level = .false. ! iso-level
ln_dynldf_hor = .true. ! horizontal (geopotential) (require "key_ldfslp" in s-coord.)
ln_dynldf_iso = .false. ! iso-neutral (require "key_ldfslp")
! ! Coefficient
rn_ahm_0_lap = 40000. ! horizontal laplacian eddy viscosity [m2/s]
rn_ahmb_0 = 0. ! background eddy viscosity for ldf_iso [m2/s]
rn_ahm_0_blp = 0. ! horizontal bilaplacian eddy viscosity [m4/s]
rn_cmsmag_1 = 3. ! constant in laplacian Smagorinsky viscosity
rn_cmsmag_2 = 3 ! constant in bilaplacian Smagorinsky viscosity
rn_cmsh = 1. ! 1 or 0 , if 0 -use only shear for Smagorinsky viscosity
rn_ahm_m_blp = -1.e12 ! upper limit for bilap abs(ahm) < min( dx^4/128rdt, rn_ahm_m_blp)
rn_ahm_m_lap = 40000. ! upper limit for lap ahm < min(dx^2/16rdt, rn_ahm_m_lap)
/
!!======================================================================
!! Tracers & Dynamics vertical physics namelists
!!======================================================================
!! namzdf vertical physics
!! namzdf_ric richardson number dependent vertical mixing ("key_zdfric")
!! namzdf_tke TKE dependent vertical mixing ("key_zdftke")
!! namzdf_kpp KPP dependent vertical mixing ("key_zdfkpp")
!! namzdf_ddm double diffusive mixing parameterization ("key_zdfddm")
!! namzdf_tmx tidal mixing parameterization ("key_zdftmx")
!! namzdf_tmx_new new tidal mixing parameterization ("key_zdftmx_new")
!!======================================================================
!
!-----------------------------------------------------------------------
&namzdf ! vertical physics
!-----------------------------------------------------------------------
rn_avm0 = 1.2e-4 ! vertical eddy viscosity [m2/s] (background Kz if not "key_zdfcst")
rn_avt0 = 1.2e-5 ! vertical eddy diffusivity [m2/s] (background Kz if not "key_zdfcst")
nn_avb = 0 ! profile for background avt & avm (=1) or not (=0)
nn_havtb = 0 ! horizontal shape for avtb (=1) or not (=0)
ln_zdfevd = .true. ! enhanced vertical diffusion (evd) (T) or not (F)
nn_evdm = 0 ! evd apply on tracer (=0) or on tracer and momentum (=1)
rn_avevd = 100. ! evd mixing coefficient [m2/s]
ln_zdfnpc = .false. ! Non-Penetrative Convective algorithm (T) or not (F)
nn_npc = 1 ! frequency of application of npc
nn_npcp = 365 ! npc control print frequency
ln_zdfexp = .false. ! time-stepping: split-explicit (T) or implicit (F) time stepping
nn_zdfexp = 3 ! number of sub-timestep for ln_zdfexp=T
/
!-----------------------------------------------------------------------
&namzdf_ric ! richardson number dependent vertical diffusion ("key_zdfric" )
!-----------------------------------------------------------------------
rn_avmri = 100.e-4 ! maximum value of the vertical viscosity
rn_alp = 5. ! coefficient of the parameterization
nn_ric = 2 ! coefficient of the parameterization
rn_ekmfc = 0.7 ! Factor in the Ekman depth Equation
rn_mldmin = 1.0 ! minimum allowable mixed-layer depth estimate (m)
rn_mldmax =1000.0 ! maximum allowable mixed-layer depth estimate (m)
rn_wtmix = 10.0 ! vertical eddy viscosity coeff [m2/s] in the mixed-layer
rn_wvmix = 10.0 ! vertical eddy diffusion coeff [m2/s] in the mixed-layer
ln_mldw = .true. ! Flag to use or not the mized layer depth param.
/
!-----------------------------------------------------------------------
&namzdf_tke ! turbulent eddy kinetic dependent vertical diffusion ("key_zdftke")
!-----------------------------------------------------------------------
rn_ediff = 0.1 ! coef. for vertical eddy coef. (avt=rn_ediff*mxl*sqrt(e) )
rn_ediss = 0.7 ! coef. of the Kolmogoroff dissipation
rn_ebb = 67.83 ! coef. of the surface input of tke (=67.83 suggested when ln_mxl0=T)
rn_emin = 1.e-6 ! minimum value of tke [m2/s2]
rn_emin0 = 1.e-4 ! surface minimum value of tke [m2/s2]
rn_bshear = 1.e-20 ! background shear (>0) currently a numerical threshold (do not change it)
nn_mxl = 2 ! mixing length: = 0 bounded by the distance to surface and bottom
! = 1 bounded by the local vertical scale factor
! = 2 first vertical derivative of mixing length bounded by 1
! = 3 as =2 with distinct disspipative an mixing length scale
nn_pdl = 1 ! Prandtl number function of richarson number (=1, avt=pdl(Ri)*avm) or not (=0, avt=avm)
ln_mxl0 = .true. ! surface mixing length scale = F(wind stress) (T) or not (F)
rn_mxl0 = 0.04 ! surface buoyancy lenght scale minimum value
ln_lc = .true. ! Langmuir cell parameterisation (Axell 2002)
rn_lc = 0.15 ! coef. associated to Langmuir cells
nn_etau = 1 ! penetration of tke below the mixed layer (ML) due to internal & intertial waves
! = 0 no penetration
! = 1 add a tke source below the ML
! = 2 add a tke source just at the base of the ML
! = 3 as = 1 applied on HF part of the stress ("key_oasis3")
rn_efr = 0.05 ! fraction of surface tke value which penetrates below the ML (nn_etau=1 or 2)
nn_htau = 1 ! type of exponential decrease of tke penetration below the ML
! = 0 constant 10 m length scale
! = 1 0.5m at the equator to 30m poleward of 40 degrees
/
!------------------------------------------------------------------------
&namzdf_kpp ! K-Profile Parameterization dependent vertical mixing ("key_zdfkpp", and optionally:
!------------------------------------------------------------------------ "key_kppcustom" or "key_kpplktb")
ln_kpprimix = .true. ! shear instability mixing
rn_difmiw = 1.0e-04 ! constant internal wave viscosity [m2/s]
rn_difsiw = 0.1e-04 ! constant internal wave diffusivity [m2/s]
rn_riinfty = 0.8 ! local Richardson Number limit for shear instability
rn_difri = 0.0050 ! maximum shear mixing at Rig = 0 [m2/s]
rn_bvsqcon = -0.01e-07 ! Brunt-Vaisala squared for maximum convection [1/s2]
rn_difcon = 1. ! maximum mixing in interior convection [m2/s]
nn_avb = 0 ! horizontal averaged (=1) or not (=0) on avt and amv
nn_ave = 1 ! constant (=0) or profile (=1) background on avt
/
!-----------------------------------------------------------------------
&namzdf_gls ! GLS vertical diffusion ("key_zdfgls")
!-----------------------------------------------------------------------
rn_emin = 1.e-7 ! minimum value of e [m2/s2]
rn_epsmin = 1.e-12 ! minimum value of eps [m2/s3]
ln_length_lim = .true. ! limit on the dissipation rate under stable stratification (Galperin et al., 1988)
rn_clim_galp = 0.267 ! galperin limit
ln_sigpsi = .true. ! Activate or not Burchard 2001 mods on psi schmidt number in the wb case
rn_crban = 100. ! Craig and Banner 1994 constant for wb tke flux
rn_charn = 70000. ! Charnock constant for wb induced roughness length
rn_hsro = 0.02 ! Minimum surface roughness
rn_frac_hs = 1.3 ! Fraction of wave height as roughness (if nn_z0_met=2)
nn_z0_met = 2 ! Method for surface roughness computation (0/1/2)
nn_bc_surf = 1 ! surface condition (0/1=Dir/Neum)
nn_bc_bot = 1 ! bottom condition (0/1=Dir/Neum)
nn_stab_func = 2 ! stability function (0=Galp, 1= KC94, 2=CanutoA, 3=CanutoB)
nn_clos = 1 ! predefined closure type (0=MY82, 1=k-eps, 2=k-w, 3=Gen)
/
!-----------------------------------------------------------------------
&namzdf_ddm ! double diffusive mixing parameterization ("key_zdfddm")
!-----------------------------------------------------------------------
rn_avts = 1.e-4 ! maximum avs (vertical mixing on salinity)
rn_hsbfr = 1.6 ! heat/salt buoyancy flux ratio
/
!-----------------------------------------------------------------------
&namzdf_tmx ! tidal mixing parameterization ("key_zdftmx")
!-----------------------------------------------------------------------
rn_htmx = 500. ! vertical decay scale for turbulence (meters)
rn_n2min = 1.e-8 ! threshold of the Brunt-Vaisala frequency (s-1)
rn_tfe = 0.333 ! tidal dissipation efficiency
rn_me = 0.2 ! mixing efficiency
ln_tmx_itf = .true. ! ITF specific parameterisation
rn_tfe_itf = 1. ! ITF tidal dissipation efficiency
/
!-----------------------------------------------------------------------
&namzdf_tmx_new ! new tidal mixing parameterization ("key_zdftmx_new")
!-----------------------------------------------------------------------
nn_zpyc = 2 ! pycnocline-intensified dissipation scales as N (=1) or N^2 (=2)
ln_mevar = .true. ! variable (T) or constant (F) mixing efficiency
ln_tsdiff = .true. ! account for differential T/S mixing (T) or not (F)
/
!!======================================================================
!! *** Miscellaneous namelists ***
!!======================================================================
!! namsol elliptic solver / island / free surface
!! nammpp Massively Parallel Processing ("key_mpp_mpi)
!! namctl Control prints & Benchmark
!! namc1d 1D configuration options ("key_c1d")
!! namc1d_uvd data: U & V currents ("key_c1d")
!! namc1d_dyndmp U & V newtonian damping ("key_c1d")
!! namsto Stochastic parametrization of EOS
!!======================================================================
!
!-----------------------------------------------------------------------
&namsol ! elliptic solver / island / free surface
!-----------------------------------------------------------------------
nn_solv = 1 ! elliptic solver: =1 preconditioned conjugate gradient (pcg)
! =2 successive-over-relaxation (sor)
nn_sol_arp = 0 ! absolute/relative (0/1) precision convergence test
rn_eps = 1.e-6 ! absolute precision of the solver
nn_nmin = 300 ! minimum of iterations for the SOR solver
nn_nmax = 800 ! maximum of iterations for the SOR solver
nn_nmod = 10 ! frequency of test for the SOR solver
rn_resmax = 1.e-10 ! absolute precision for the SOR solver
rn_sor = 1.92 ! optimal coefficient for SOR solver (to be adjusted with the domain)
/
!-----------------------------------------------------------------------
&nammpp ! Massively Parallel Processing ("key_mpp_mpi)
!-----------------------------------------------------------------------
cn_mpi_send = 'I' ! mpi send/recieve type ='S', 'B', or 'I' for standard send,
! buffer blocking send or immediate non-blocking sends, resp.
nn_buffer = 0 ! size in bytes of exported buffer ('B' case), 0 no exportation
ln_nnogather= .true. ! activate code to avoid mpi_allgather use at the northfold
jpni = 0 ! jpni number of processors following i (set automatically if < 1)
jpnj = 0 ! jpnj number of processors following j (set automatically if < 1)
jpnij = 144 ! jpnij number of local domains (set automatically if < 1)
/
!-----------------------------------------------------------------------
&namctl ! Control prints & Benchmark
!-----------------------------------------------------------------------
ln_ctl = .false. ! trends control print (expensive!)
nn_print = 0 ! level of print (0 no extra print)
nn_ictls = 0 ! start i indice of control sum (use to compare mono versus
nn_ictle = 0 ! end i indice of control sum multi processor runs
nn_jctls = 0 ! start j indice of control over a subdomain)
nn_jctle = 0 ! end j indice of control
nn_isplt = 1 ! number of processors in i-direction
nn_jsplt = 1 ! number of processors in j-direction
nn_bench = 0 ! Bench mode (1/0): CAUTION use zero except for bench
! (no physical validity of the results)
nn_timing = 0 ! timing by routine activated (=1) creates timing.output file, or not (=0)
/
!-----------------------------------------------------------------------
&namc1d_uvd ! data: U & V currents ("key_c1d")
!-----------------------------------------------------------------------
! ! file name ! frequency (hours) ! variable ! time interp. ! clim ! 'yearly'/ ! weights ! rotation ! land/sea mask !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! filename ! pairing ! filename !
sn_ucur = 'ucurrent' , -1 ,'u_current', .false. , .true. , 'monthly' , '' , 'Ume' , ''
sn_vcur = 'vcurrent' , -1 ,'v_current', .false. , .true. , 'monthly' , '' , 'Vme' , ''
!
cn_dir = './' ! root directory for the location of the files
ln_uvd_init = .false. ! Initialisation of ocean U & V with U & V input data (T) or not (F)
ln_uvd_dyndmp = .false. ! damping of ocean U & V toward U & V input data (T) or not (F)
/
!-----------------------------------------------------------------------
&namc1d_dyndmp ! U & V newtonian damping ("key_c1d")
!-----------------------------------------------------------------------
ln_dyndmp = .false. ! add a damping term (T) or not (F)
/
!-----------------------------------------------------------------------
&namsto ! Stochastic parametrization of EOS
!-----------------------------------------------------------------------
ln_rststo = .false. ! start from mean parameter (F) or from restart file (T)
ln_rstseed = .true. ! read seed of RNG from restart file
cn_storst_in = "restart_sto" ! suffix of stochastic parameter restart file (input)
cn_storst_out = "restart_sto" ! suffix of stochastic parameter restart file (output)
ln_sto_eos = .false. ! stochastic equation of state
nn_sto_eos = 1 ! number of independent random walks
rn_eos_stdxy = 1.4 ! random walk horz. standard deviation (in grid points)
rn_eos_stdz = 0.7 ! random walk vert. standard deviation (in grid points)
rn_eos_tcor = 1440.0 ! random walk time correlation (in timesteps)
nn_eos_ord = 1 ! order of autoregressive processes
nn_eos_flt = 0 ! passes of Laplacian filter
rn_eos_lim = 2.0 ! limitation factor (default = 3.0)
/
!!======================================================================
!! *** Diagnostics namelists ***
!!======================================================================
!! namnc4 netcdf4 chunking and compression settings ("key_netcdf4")
!! namtrd dynamics and/or tracer trends
!! namptr Poleward Transport Diagnostics
!! namflo float parameters ("key_float")
!! namhsb Heat and salt budgets
!!======================================================================
!
!-----------------------------------------------------------------------
&namnc4 ! netcdf4 chunking and compression settings ("key_netcdf4")
!-----------------------------------------------------------------------
nn_nchunks_i= 4 ! number of chunks in i-dimension
nn_nchunks_j= 4 ! number of chunks in j-dimension
nn_nchunks_k= 31 ! number of chunks in k-dimension
! setting nn_nchunks_k = jpk will give a chunk size of 1 in the vertical which
! is optimal for postprocessing which works exclusively with horizontal slabs
ln_nc4zip = .true. ! (T) use netcdf4 chunking and compression
! (F) ignore chunking information and produce netcdf3-compatible files
/
!-----------------------------------------------------------------------
&namtrd ! diagnostics on dynamics and/or tracer trends
! ! and/or mixed-layer trends and/or barotropic vorticity
!-----------------------------------------------------------------------
ln_glo_trd = .false. ! (T) global domain averaged diag for T, T^2, KE, and PE
ln_dyn_trd = .TRUE. ! (T) 3D momentum trend output
ln_dyn_mxl = .FALSE. ! (T) 2D momentum trends averaged over the mixed layer (not coded yet)
ln_vor_trd = .FALSE. ! (T) 2D barotropic vorticity trends (not coded yet)
ln_KE_trd = .false. ! (T) 3D Kinetic Energy trends
ln_PE_trd = .false. ! (T) 3D Potential Energy trends
ln_tra_trd = .TRUE. ! (T) 3D tracer trend output
ln_tra_mxl = .false. ! (T) 2D tracer trends averaged over the mixed layer (not coded yet)
nn_trd = 365 ! print frequency (ln_glo_trd=T) (unit=time step)
/
!!gm nn_ctls = 0 ! control surface type in mixed-layer trends (0,1 or n<jpk)
!!gm rn_ucf = 1. ! unit conversion factor (=1 -> /seconds ; =86400. -> /day)
!!gm cn_trdrst_in = "restart_mld" ! suffix of ocean restart name (input)
!!gm cn_trdrst_out = "restart_mld" ! suffix of ocean restart name (output)
!!gm ln_trdmld_restart = .false. ! restart for ML diagnostics
!!gm ln_trdmld_instant = .false. ! flag to diagnose trends of instantantaneous or mean ML T/S
!!gm
!-----------------------------------------------------------------------
&namflo ! float parameters ("key_float")
!-----------------------------------------------------------------------
jpnfl = 1 ! total number of floats during the run
jpnnewflo = 0 ! number of floats for the restart
ln_rstflo = .false. ! float restart (T) or not (F)
nn_writefl = 75 ! frequency of writing in float output file
nn_stockfl = 5475 ! frequency of creation of the float restart file
ln_argo = .false. ! Argo type floats (stay at the surface each 10 days)
ln_flork4 = .false. ! trajectories computed with a 4th order Runge-Kutta (T)
! or computed with 'Blanke' scheme (F)
ln_ariane = .true. ! Input with Ariane tool convention(T)
ln_flo_ascii = .true. ! Output with Ariane tool netcdf convention(F) or ascii file (T)
/
!-----------------------------------------------------------------------
&namptr ! Poleward Transport Diagnostic
!-----------------------------------------------------------------------
ln_diaptr = .true. ! Poleward heat and salt transport (T) or not (F)
ln_subbas = .true. ! Atlantic/Pacific/Indian basins computation (T) or not
/
!-----------------------------------------------------------------------
&namhsb ! Heat and salt budgets
!-----------------------------------------------------------------------
ln_diahsb = .false. ! check the heat and salt budgets (T) or not (F)
/
!-----------------------------------------------------------------------
&nam_diaharm ! Harmonic analysis of tidal constituents ('key_diaharm')
!-----------------------------------------------------------------------
nit000_han = 1 ! First time step used for harmonic analysis
nitend_han = 75 ! Last time step used for harmonic analysis
nstep_han = 15 ! Time step frequency for harmonic analysis
tname(1) = 'M2' ! Name of tidal constituents
tname(2) = 'K1'
/
!-----------------------------------------------------------------------
&namdct ! transports through sections
!-----------------------------------------------------------------------
nn_dct = 15 ! time step frequency for transports computing
nn_dctwri = 15 ! time step frequency for transports writing
nn_secdebug = 112 ! 0 : no section to debug
! -1 : debug all section
! 0 < n : debug section number n
/
!!======================================================================
!! *** Observation & Assimilation namelists ***
!!======================================================================
!! namobs observation and model comparison ('key_diaobs')
!! nam_asminc assimilation increments ('key_asminc')
!!======================================================================
!
!-----------------------------------------------------------------------
&namobs ! observation usage switch ('key_diaobs')
!-----------------------------------------------------------------------
ln_t3d = .false. ! Logical switch for T profile observations
ln_s3d = .false. ! Logical switch for S profile observations
ln_ena = .false. ! Logical switch for ENACT insitu data set
ln_cor = .false. ! Logical switch for Coriolis insitu data set
ln_profb = .false. ! Logical switch for feedback insitu data set
ln_sla = .false. ! Logical switch for SLA observations
ln_sladt = .false. ! Logical switch for AVISO SLA data
ln_slafb = .false. ! Logical switch for feedback SLA data
ln_ssh = .false. ! Logical switch for SSH observations
ln_sst = .false. ! Logical switch for SST observations
ln_reysst = .false. ! Logical switch for Reynolds observations
ln_ghrsst = .false. ! Logical switch for GHRSST observations
ln_sstfb = .false. ! Logical switch for feedback SST data
ln_sss = .false. ! Logical switch for SSS observations
ln_seaice = .false. ! Logical switch for Sea Ice observations
ln_vel3d = .false. ! Logical switch for velocity observations
ln_velavcur= .false ! Logical switch for velocity daily av. cur.
ln_velhrcur= .false ! Logical switch for velocity high freq. cur.
ln_velavadcp = .false. ! Logical switch for velocity daily av. ADCP
ln_velhradcp = .false. ! Logical switch for velocity high freq. ADCP
ln_velfb = .false. ! Logical switch for feedback velocity data
ln_grid_global = .false. ! Global distribtion of observations
ln_grid_search_lookup = .false. ! Logical switch for obs grid search w/lookup table
grid_search_file = 'grid_search' ! Grid search lookup file header
! All of the *files* variables below are arrays. Use namelist_cfg to add more files
enactfiles = 'enact.nc' ! ENACT input observation file names (specify full array in namelist_cfg)
coriofiles = 'corio.nc' ! Coriolis input observation file name
profbfiles = 'profiles_01.nc' ! Profile feedback input observation file name
ln_profb_enatim = .false ! Enact feedback input time setting switch
slafilesact = 'sla_act.nc' ! Active SLA input observation file names
slafilespas = 'sla_pass.nc' ! Passive SLA input observation file names
slafbfiles = 'sla_01.nc' ! slafbfiles: Feedback SLA input observation file names
sstfiles = 'ghrsst.nc' ! GHRSST input observation file names
sstfbfiles = 'sst_01.nc' ! Feedback SST input observation file names
seaicefiles = 'seaice_01.nc' ! Sea Ice input observation file names
velavcurfiles = 'velavcurfile.nc' ! Vel. cur. daily av. input file name
velhrcurfiles = 'velhrcurfile.nc' ! Vel. cur. high freq. input file name
velavadcpfiles = 'velavadcpfile.nc' ! Vel. ADCP daily av. input file name
velhradcpfiles = 'velhradcpfile.nc' ! Vel. ADCP high freq. input file name
velfbfiles = 'velfbfile.nc' ! Vel. feedback input observation file name
dobsini = 20000101.000000 ! Initial date in window YYYYMMDD.HHMMSS
dobsend = 20010101.000000 ! Final date in window YYYYMMDD.HHMMSS
n1dint = 0 ! Type of vertical interpolation method
n2dint = 0 ! Type of horizontal interpolation method
ln_nea = .false. ! Rejection of observations near land switch
nmsshc = 0 ! MSSH correction scheme
mdtcorr = 1.61 ! MDT correction
mdtcutoff = 65.0 ! MDT cutoff for computed correction
ln_altbias = .false. ! Logical switch for alt bias
ln_ignmis = .true. ! Logical switch for ignoring missing files
endailyavtypes = 820 ! ENACT daily average types - array (use namelist_cfg to set more values)
/
!-----------------------------------------------------------------------
&nam_asminc ! assimilation increments ('key_asminc')
!-----------------------------------------------------------------------
ln_bkgwri = .false. ! Logical switch for writing out background state
ln_trainc = .false. ! Logical switch for applying tracer increments
ln_dyninc = .false. ! Logical switch for applying velocity increments
ln_sshinc = .false. ! Logical switch for applying SSH increments
ln_asmdin = .false. ! Logical switch for Direct Initialization (DI)
ln_asmiau = .false. ! Logical switch for Incremental Analysis Updating (IAU)
nitbkg = 0 ! Timestep of background in [0,nitend-nit000-1]
nitdin = 0 ! Timestep of background for DI in [0,nitend-nit000-1]
nitiaustr = 1 ! Timestep of start of IAU interval in [0,nitend-nit000-1]
nitiaufin = 15 ! Timestep of end of IAU interval in [0,nitend-nit000-1]
niaufn = 0 ! Type of IAU weighting function
ln_salfix = .false. ! Logical switch for ensuring that the sa > salfixmin
salfixmin = -9999 ! Minimum salinity after applying the increments
nn_divdmp = 0 ! Number of iterations of divergence damping operator
/
!-----------------------------------------------------------------------
&namsbc_wave ! External fields from wave model
!-----------------------------------------------------------------------
! ! file name ! frequency (hours) ! variable ! time interp. ! clim ! 'yearly'/ ! weights ! rotation ! land/sea mask !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! filename ! pairing ! filename !
sn_cdg = 'cdg_wave' , 1 , 'drag_coeff' , .true. , .false. , 'daily' , '' , '' , ''
sn_usd = 'sdw_wave' , 1 , 'u_sd2d' , .true. , .false. , 'daily' , '' , '' , ''
sn_vsd = 'sdw_wave' , 1 , 'v_sd2d' , .true. , .false. , 'daily' , '' , '' , ''
sn_wn = 'sdw_wave' , 1 , 'wave_num' , .true. , .false. , 'daily' , '' , '' , ''
!
cn_dir_cdg = './' ! root directory for the location of drag coefficient files
/
!-----------------------------------------------------------------------
&namdyn_nept ! Neptune effect (simplified: lateral and vertical diffusions removed)
!-----------------------------------------------------------------------
! Suggested lengthscale values are those of Eby & Holloway (1994) for a coarse model
ln_neptsimp = .false. ! yes/no use simplified neptune
ln_smooth_neptvel = .false. ! yes/no smooth zunep, zvnep
rn_tslse = 1.2e4 ! value of lengthscale L at the equator
rn_tslsp = 3.0e3 ! value of lengthscale L at the pole
! Specify whether to ramp down the Neptune velocity in shallow
! water, and if so the depth range controlling such ramping down
ln_neptramp = .true. ! ramp down Neptune velocity in shallow water
rn_htrmin = 100.0 ! min. depth of transition range
rn_htrmax = 200.0 ! max. depth of transition range
/